

A Novel Approach to Identify Spatio-Temporal Crime Patterns in Dhaka City

Md. Rizwan Parvez (0905069), Turash Mosharraf (0905104)

Problem Definition

- Street crimes have become a prevalent problem in Dhaka city [1]
- These crimes are spatio-temporal in nature (e.g: Cartheft is more frequent in Dhanmondi at noon than other areas in Dhaka)
- Based on historical spatio-temporal crime data, we develop a model to predict a street crime with respect to a given location at a particular time

- Compute the prior probability of a crime of a particular type, day of week from DMP data
- Compute the total probability of occurring a crime for a given location, time , day and type
- Compute the weighted average of crime probabilities of different months where the recent months have the maximum weight

Figure 3 (a): Crime incidents of recent months

Figure 3 (b): Crime incidents of 1 month earlier

□ Classify the probability of occurring a crime for given location, time, day, and type into one of the following risk categories: **high, moderate, low**

ANCHDONA AR University of Dhaka

Figure 1: A sample crime record on DMP map

Motivation

- Alert people about crime probable locations so that they can take necessary precautions
- Help law enforcement agencies to take effective actions
- Can not use existing models [3] and tools [2] because of the unavailability of required attributes

Objective

- Develop a spatio-temporal crime prediction model that gives a portability of a crime at a particular location in the specified time
- □ Identify the crime patterns of Dhaka city
- Develop a location based mobile application that alerts a user about the possibility of crime when he/she visits a location

Our Approach

- □ Extract the necessary and available attributes:
 - Location, Crime type, Day, Time
- Compute the probability of a crime in a location
 - Divide the whole Dhaka city into grids
 Consider the impact of occurring a crime on its own grid and surroundings

Test the correctness of our model by comparing with real data

Outcome

Perform extensive experimentation to fix the values of the following necessary factors of our model:

- Impact of a crime on its own grid
- Impact of a crime on its neighboring grids
- Impact of a crime on its own time zone
- Impact of a crime on its neighboring time zones
- Number of grids

Figure 2: Impact of a crime on its own and neighboring locations

Compute the probability of a crime at a particular time

- Divide the whole day into fragments of time zones
- Consider the impact of occurring a crime on its own and neighboring time zones

Evaluation metrics:

- our model can accurately predict a crime in **79.24%** where it actually happens.
- our model can accurately predict a crime not likely to occur in 68.2% where it does not actually happen.

Future Work

Develop a mobile app which gives [1]
 auto alert in case of entering into a
 crime probable areas and fine tuning
 our model [2]

Figure 7: Mobile app based on our computation model

References

-] Dhaka metropalitan police. http: //dmp.gov.bd/application/index/page/crime-data
- [2] Predpol usage. http://www.predpol.com/ atlanta-police-chief-george-turner-highlightspredpol-usage/
- [3] Short, Martin B., and R. D. Maria. "'Orsogna, Virginia B Pasour, George E Tita, Paul J Brantingham, Andrea L Bertozzi, and Lincoln B Chayes." *A statistical model of criminal behavior. Mathematical Models and Methods in Applied Sciences* 18 (2008): 1249-1267.

Department of Computer Science and Engineering (CSE), BUET