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Problem Definition:

A large volume of call detail records (CDR) is generated everyday
from millions of phone calls

1 These CDR data can be used to reveal vital information about an
Individual or a community

 Processing this huge volume of data for extracting any specific
Information, in particular, detection of different communities is a
challenging task

In this project, we provide a scalable approach to process a
huge volume of CDRs and identify different communities.

Tools Used:

d Java
— To split the large data file into smaller ones based on time
— To preprocess data records, before inserting into database
d Titan Graph Database
— To store call detail records as a graph
1 Apache Cassandra
— To maintain distributed storage backend for Titan
 Rexster Graph Server
— Tovisualize the generated graph
d Gremlin Graph Traversal Language
— To execute graph queries

Background and Motivation:

O Applications of community detection
— Provide insight into how users in a mobile network interact with
each other
— Recommend suitable packages to users
— Identify possible churns in the network
O Analyzing call detail records
— Each day’s call log contain around 32 million records
— For one month, size of the call log is around 76 GB
d Limitations of existing approaches
— Do not exploit the full potential of existing big data frameworks [1-3]

System Description:

Qur Approach:

d Split the data file containing call detail records of one month into
smaller files based on the date of call i.e., one file for each day
1 Generate graphs for each day’s call logs and store them in a
distributed graph database
— the graph contains 2 types of nodes- User and Call
— From each call node, 2 edges exist toward the associated
pair of users
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vertex type: call vertex type: call
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duration: 48 duration: 125

Figure 1: A sample of the generated graph

1 Process the generated graph for community detection
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Figure 2: Community detection from call detail record graph

O A distributed graph database is deployed in a cluster of 4
machines. Each machine is connected to each other through a
high-speed (100 Mbps) LAN

 The deployed system is horizontally scalable. As new machines
are added, the storage capacity of the system increases

Capacity 20 GB Capacity 10 GB Capacity 30 GB

Figure 3: Horizontal scalability of the deployed system

d As more machines are added to the cluster, average query time
remains same. However, average insertion time increases
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Figure 4. Experimental results for varying no of machines
In a cluster

Future Work:

1 Optimize the deployed system for reducing the pocessing time
 Develop a novel, scalable algorithm for community detection from
the generated CDR graph
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