
Scalable Processing of Call Detail Records 

for Community Detection

Md. Nasim (0905018), Sharowar Md Shahriar Khan (0905053) 

Department of Computer Science and Engineering (CSE), BUET

Problem Definition:

Background and Motivation:

Our Approach:

Tools Used:

System Description:

Future Work:

References:

 Split the data file containing call detail records of one month into

smaller files based on the date of call i.e., one file for each day

 Generate graphs for each day’s call logs and store them in a

distributed graph database

̶ the graph contains 2 types of nodes- User and Call

̶ From each call node, 2 edges exist toward the associated

pair of users

 Java

̶ To split the large data file into smaller ones based on time

̶ To preprocess data records, before inserting into database

 Titan Graph Database

̶ To store call detail records as a graph

 Apache Cassandra

̶ To maintain distributed storage backend for Titan 

 Rexster Graph Server

̶ To visualize the generated graph

 Gremlin Graph Traversal Language

̶ To execute graph queries

vertex type: user

id: “AAAA”

vertex type: user

id: “BBBB”

vertex type: user

id: “CCCC”

vertex type: call

timestamp: Jan 27, 2013, 09:02:31 

duration: 125

Figure 1: A sample of the generated graph

edge label: callmadeby

location: 23.42, 90.51

edge label: callmadeby

location: 23.37, 90.27

edge label: callmadeby

location: 23.41, 90.47

edge label: callmadeby

location: 23.38, 90.33

 Process the generated graph for community detection

 A distributed graph database is deployed in a cluster of 4

machines. Each machine is connected to each other through a

high-speed (100 Mbps) LAN

 The deployed system is horizontally scalable. As new machines

are added, the storage capacity of the system increases

Capacity 20 GB Capacity 10 GB Capacity 30 GB

Figure 3: Horizontal scalability of the deployed system

 As more machines are added to the cluster, average query time

remains same. However, average insertion time increases

Figure 4: Experimental results for varying no of machines 

in a cluster

(a) No of machines vs average insertion 

time.

(b) No of machines vs average query

time.

 Optimize the deployed system for reducing the pocessing time

 Develop a novel, scalable algorithm for community detection from

the generated CDR graph

0

100

200

300

400

500

600

700

800

1 2 4

T
im

e
 i

n
 m

ic
ro

s
e

c
o

n
d

No of Machines

1. Kolda, Tamara G., et al. "Counting triangles in massive graphs with

MapReduce." SIAM Journal on Scientific Computing 36.5 (2014): S48-S77.

2. Cui, Wen, Guoyong Wang, and Ke Xu. "Parallel Community Mining in Social

Network using Map-reduce." International Journal of Advancements in Computing

Technology 4.15 (2012): 445-453.

3. Simmen, David, et al. "Large-scale graph analytics in aster 6: Bringing context to big

data discovery." Proceedings of the VLDB Endowment 7.13 (2014).

13

13.2

13.4

13.6

13.8

14

14.2

14.4

14.6

1 2 4

T
im

e
 i

n
 m

ic
ro

s
e

c
o

n
d

No of Machines

 Applications of community detection

̶ Provide insight into how users in a mobile network interact with

each other

̶ Recommend suitable packages to users

̶ Identify possible churns in the network

 Analyzing call detail records

̶ Each day’s call log contain around 32 million records

̶ For one month, size of the call log is around 76 GB

 Limitations of existing approaches

̶ Do not exploit the full potential of existing big data frameworks [1-3]

vertex type: call

timestamp: Jan 25, 2013, 11:23:01 

duration: 48

 A large volume of call detail records (CDR) is generated everyday

from millions of phone calls

 These CDR data can be used to reveal vital information about an

individual or a community

 Processing this huge volume of data for extracting any specific

information, in particular, detection of different communities is a

challenging task

In this project, we provide a scalable approach to process a

huge volume of CDRs and identify different communities.

Figure 2: Community detection from call detail record graph

user-1

call-1

user-2

call-2

call-3

call-4

Users calling each other 

frequently, are connected

user-1 user-2

3-connected community

2-connected community

call-5

call-6

call-7

call-8

call-9

call-10

user-3

user-4

user-5

user-1 user-5

user-2 user-5

user-3 user-4

CDR graph Communities in the 

network formed by 

connected users

user-1

user-5

user-2

user-3

user-4


