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 Split the data file containing call detail records of one month into

smaller files based on the date of call i.e., one file for each day

 Generate graphs for each day’s call logs and store them in a

distributed graph database

̶ the graph contains 2 types of nodes- User and Call

̶ From each call node, 2 edges exist toward the associated

pair of users

 Java

̶ To split the large data file into smaller ones based on time

̶ To preprocess data records, before inserting into database

 Titan Graph Database

̶ To store call detail records as a graph

 Apache Cassandra

̶ To maintain distributed storage backend for Titan 

 Rexster Graph Server

̶ To visualize the generated graph

 Gremlin Graph Traversal Language

̶ To execute graph queries

vertex type: user

id: “AAAA”

vertex type: user

id: “BBBB”

vertex type: user

id: “CCCC”

vertex type: call

timestamp: Jan 27, 2013, 09:02:31 

duration: 125

Figure 1: A sample of the generated graph

edge label: callmadeby

location: 23.42, 90.51

edge label: callmadeby

location: 23.37, 90.27

edge label: callmadeby

location: 23.41, 90.47

edge label: callmadeby

location: 23.38, 90.33

 Process the generated graph for community detection

 A distributed graph database is deployed in a cluster of 4

machines. Each machine is connected to each other through a

high-speed (100 Mbps) LAN

 The deployed system is horizontally scalable. As new machines

are added, the storage capacity of the system increases

Capacity 20 GB Capacity 10 GB Capacity 30 GB

Figure 3: Horizontal scalability of the deployed system

 As more machines are added to the cluster, average query time

remains same. However, average insertion time increases

Figure 4: Experimental results for varying no of machines 

in a cluster

(a) No of machines vs average insertion 

time.

(b) No of machines vs average query

time.

 Optimize the deployed system for reducing the pocessing time

 Develop a novel, scalable algorithm for community detection from

the generated CDR graph
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 Applications of community detection

̶ Provide insight into how users in a mobile network interact with

each other

̶ Recommend suitable packages to users

̶ Identify possible churns in the network

 Analyzing call detail records

̶ Each day’s call log contain around 32 million records

̶ For one month, size of the call log is around 76 GB

 Limitations of existing approaches

̶ Do not exploit the full potential of existing big data frameworks [1-3]

vertex type: call

timestamp: Jan 25, 2013, 11:23:01 

duration: 48

 A large volume of call detail records (CDR) is generated everyday

from millions of phone calls

 These CDR data can be used to reveal vital information about an

individual or a community

 Processing this huge volume of data for extracting any specific

information, in particular, detection of different communities is a

challenging task

In this project, we provide a scalable approach to process a

huge volume of CDRs and identify different communities.

Figure 2: Community detection from call detail record graph
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