Scalable Processing of Call Detaill Records
for Community Detection

Md. Nasim (0905018), Sharowar Md Shahriar Khan (0905053)

Problem Definition:

A large volume of call detail records (CDR) is generated everyday
from millions of phone calls

1 These CDR data can be used to reveal vital information about an
Individual or a community

 Processing this huge volume of data for extracting any specific
Information, in particular, detection of different communities is a
challenging task

In this project, we provide a scalable approach to process a
huge volume of CDRs and identify different communities.

Tools Used:

d Java
— To split the large data file into smaller ones based on time
— To preprocess data records, before inserting into database
d Titan Graph Database
— To store call detail records as a graph
1 Apache Cassandra
— To maintain distributed storage backend for Titan
 Rexster Graph Server
— Tovisualize the generated graph
d Gremlin Graph Traversal Language
— To execute graph queries

Background and Motivation:

O Applications of community detection
— Provide insight into how users in a mobile network interact with
each other
— Recommend suitable packages to users
— Identify possible churns in the network
O Analyzing call detail records
— Each day’s call log contain around 32 million records
— For one month, size of the call log is around 76 GB
d Limitations of existing approaches
— Do not exploit the full potential of existing big data frameworks [1-3]

System Description:

Qur Approach:

d Split the data file containing call detail records of one month into
smaller files based on the date of call i.e., one file for each day
1 Generate graphs for each day’s call logs and store them in a
distributed graph database
— the graph contains 2 types of nodes- User and Call
— From each call node, 2 edges exist toward the associated
pair of users

vertex type: user vertex type: user vertex type: user
id: “AAAA” id: “BBBB” id: “CCCC”

L [N)

i edge label: callmadeby i iedgelabel: callmadeby : i edge label: callmadeby | i edge label: callmadeby i
{ location: 23.42,90.51 | ilocation: 23.37,90.27 i {location: 23.41,90.47 { i location: 23.38,90.33 i

................................] e

vertex type: call vertex type: call
timestamp: Jan 25, 2013, 11:23:01 timestamp: Jan 27, 2013, 09:02:31
duration: 48 duration: 125

Figure 1: A sample of the generated graph

1 Process the generated graph for community detection

CDR graph Communities in the
network formed by
_ connected users
call-1 Users calling each other
user-1 frequently, are connected et
call-2
! : /" user-1
call-3 ! user-1 —— user-2 :] \
user-2 ! !) l
! ! i‘ user-5 |
call-4 ! ! | :
, user-1 —— wuser-5 ! \ i
call-5 user-3 ‘ | N | user=2
i user-2 — wuser5 1 TTmeeeeet _
call-6 </ /~» 3-connected community
user-4 o __.
call-7 user-3 — user-4 N =0 --TTTTee-
call-8 user-5 \ user-3
call-9 user-4
call-10 2-connected community

Figure 2: Community detection from call detail record graph

O A distributed graph database is deployed in a cluster of 4
machines. Each machine is connected to each other through a
high-speed (100 Mbps) LAN

 The deployed system is horizontally scalable. As new machines
are added, the storage capacity of the system increases

Capacity 20 GB Capacity 10 GB Capacity 30 GB

Figure 3: Horizontal scalability of the deployed system

d As more machines are added to the cluster, average query time
remains same. However, average insertion time increases

800 —prerssssssnnnnnsssmmmssrsannnnn s naarrraan i raannnn 14.6 —presssssssncscnsssmssssssnnnnnnsssssnsssnnnnnnnnnssnnnnnnnnnns

700 - 14.4
'8 ©
S 600 - S 14.2
O O
)] 500 - %) 14
o o
L2 400 - L2 13.8
= =
£ 300 - £13.6
e e
= 200 - = 13.4

100 - 13.2 -

0 - 13 -
1 2 4 1 2 4
No of Machines No of Machines

(a) No of machines vs average insertion
time.

(b) No of machines vs average query
time.

Figure 4. Experimental results for varying no of machines
In a cluster

Future Work:

1 Optimize the deployed system for reducing the pocessing time
 Develop a novel, scalable algorithm for community detection from
the generated CDR graph

References:

1. Kolda, Tamara G., et al. "Counting triangles in massive graphs with
MapReduce." SIAM Journal on Scientific Computing 36.5 (2014): S48-S77.

2. Cui, Wen, Guoyong Wang, and Ke Xu. "Parallel Community Mining in Social
Network using Map-reduce." International Journal of Advancements in Computing
Technology 4.15 (2012): 445-453.

3. Simmen, David, et al. "Large-scale graph analytics in aster 6: Bringing context to big
data discovery." Proceedings of the VLDB Endowment 7.13 (2014).

Department of Computer Science and Engineering (CSE), BUET

